The PAAD/PYRIN-Family Protein ASC Is a Dual Regulator of a Conserved Step in Nuclear Factor κB Activation Pathways

نویسندگان

  • Christian Stehlik
  • Loredana Fiorentino
  • Andrea Dorfleutner
  • Jean-Marie Bruey
  • Eugenia M. Ariza
  • Junji Sagara
  • John C. Reed
چکیده

Apoptosis-associated speck-like protein containing a Caspase recruitment domain (ASC) belongs to a large family of proteins that contain a Pyrin, AIM, ASC, and death domain-like (PAAD) domain (also known as PYRIN, DAPIN, Pyk). Recent data have suggested that ASC functions as an adaptor protein linking various PAAD-family proteins to pathways involved in nuclear factor (NF)-kappaB and pro-Caspase-1 activation. We present evidence here that the role of ASC in modulating NF-kappaB activation pathways is much broader than previously suspected, as it can either inhibit or activate NF-kappaB, depending on cellular context. While coexpression of ASC with certain PAAD-family proteins such as Pyrin and Cryopyrin increases NF-kappaB activity, ASC has an inhibitory influence on NF-kappaB activation by various proinflammatory stimuli, including tumor necrosis factor (TNF)alpha, interleukin 1beta, and lipopolysaccharide (LPS). Elevations in ASC protein levels or of the PAAD domain of ASC suppressed activation of IkappaB kinases in cells exposed to pro-inflammatory stimuli. Conversely, reducing endogenous levels of ASC using siRNA enhanced TNF- and LPS-induced degradation of the IKK substrate, IkappaBalpha. Our findings suggest that ASC modulates diverse NF-kappaB induction pathways by acting upon the IKK complex, implying a broad role for this and similar proteins containing PAAD domains in regulation of inflammatory responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation.

Proteins containing PAAD [pyrin, AIM (absent-in-melanoma), ASC [apoptosis-associated speck-like protein containing a CARD (caspase-recruitment domain)] and DD (death domain)-like] (PYRIN, DAPIN) domains are involved in innate immunity, regulating pathways leading to nuclear-factor-kappa B (NF-kappa B) and pro-caspase-1 activation. Many PAAD-family proteins have structures reminiscent of Nod-1, ...

متن کامل

Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation.

Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/target of methylation-induced silencing/PYCARD represents one of only two proteins encoded in the human genome that contains a caspase recruitment domain (CARD) together with a pyrin, AIM, ASC, and death domain-like (PAAD)/PYRIN/DAPIN domain. CARDs regulate caspase family proteases. We show here that ASC binds...

متن کامل

PAN1/NALP2/PYPAF2, an inducible inflammatory mediator that regulates NF-kappaB and caspase-1 activation in macrophages.

Genes encoding proteins with PYRIN/PAAD/DAPIN domains, a nucleotide binding fold (NACHT), and leucine rich repeats have recently been recognized as important mediators in autoimmune inflammatory disorders. Here we characterize the expression and function of a member of the PYRIN and NACHT domain (PAN) family, PAN1 (also known as NALP2 and PYPAF2). PAN1 protein expression is regulated by lipopol...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

S100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways

Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 196  شماره 

صفحات  -

تاریخ انتشار 2002